FINITE TYPE CURVE IN 3-DIMENSIONAL SASAKIAN MANIFOLD

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Finite Type 3-manifold Invariants Iii: Manifold Weight Systems

The present paper is a continuation of [Oh2] and [GL] devoted to the study of finite type invariants of integral homology 3-spheres. We introduce the notion of manifold weight systems, and show that type m invariants of integral homology 3-spheres are determined (modulo invariants of type m − 1) by their associated manifold weight systems. In particular we deduce a vanishing theorem for finite ...

متن کامل

On Finite Type 3-manifold Invariants Ii

The purpose of the present paper is, among other things, to relate the seemingly unrelated notions of surgical equivalence of links in S 3 ((Le1]) and the notion of nite type invariants of oriented integral homology 3-spheres, due to T. Ohtsuki Oh]. The paper consists of two parts. In the rst part we classify pure braids and string links modulo the relation of surgical equivalence. We prove tha...

متن کامل

On Finite Type 3-manifold Invariants I

Recently Ohtsuki Oh2], motivated by the notion of nite type knot invariants, introduced the notion of nite type invariants for oriented, integral ho-mology 3-spheres (ZHS for short). In the present paper we propose another definition of nite type invariants of Z HS and give equivalent reformulations of our notion. We show that our invariants form a ltered commutative algebra and are of nite typ...

متن کامل

On 3-manifold Invariants Arising from Finite-dimensional Hopf Algebras

We reformulate Kauffman’s method of defining invariants of 3-manifolds intrinsically in terms of right integrals on certain finite dimensional Hopf algebras and define a type of universal invariants of framed tangles and invariants of 3-manifolds.

متن کامل

The Alexander Polynomial and Finite Type 3-manifold Invariants

Using elementary counting methods, we calculate the universal invariant (also known as the LMO invariant) of a 3-manifold M , satisfying H1(M,Z) = Z, in terms of the Alexander polynomial of M . We show that +1 surgery on a knot in the 3-sphere induces an injective map from finite type invariants of integral homology 3-spheres to finite type invariants of knots. We also show that weight systems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2010

ISSN: 1015-8634

DOI: 10.4134/bkms.2010.47.6.1163